Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present JWST MIRI 5.6, 10, and 21μm observations of the candidate failed supernova N6946-BH1 along with Hubble Space Telescope (HST) WFPC/IR 1.1 and 1.6μm data and ongoing optical monitoring data with the Large Binocular Telescope. There is a very red, dusty source at the location of the candidate, which has only ∼10%–15% of the luminosity of the progenitor star. The source is very faint in the HST near-IR observations (∼103L⊙) and is not optically variable to a limit of ∼103L⊙at theRband. The dust is likely silicate and probably has to be dominated by very large grains, as predicted for dust formed in a failed supernova. The required visual optical depths are modest, so it should begin to significantly brighten in the near-IR over the next few years.more » « less
-
Abstract X-ray reverberation mapping is a powerful technique for probing the innermost accretion disk, whereas continuum reverberation mapping in the UV, optical, and infrared (UVOIR) reveals reprocessing by the rest of the accretion disk and broad-line region (BLR). We present the time lags of Mrk 817 as a function of temporal frequency measured from 14 months of high-cadence monitoring from Swift and ground-based telescopes, in addition to an XMM-Newton observation, as part of the AGN STORM 2 campaign. The XMM-Newton lags reveal the first detection of a soft lag in this source, consistent with reverberation from the innermost accretion flow. These results mark the first simultaneous measurement of X-ray reverberation and UVOIR disk reprocessing lags—effectively allowing us to map the entire accretion disk surrounding the black hole. Similar to previous continuum reverberation mapping campaigns, the UVOIR time lags arising at low temporal frequencies are longer than those expected from standard disk reprocessing by a factor of 2–3. The lags agree with the anticipated disk reverberation lags when isolating short-timescale variability, namely timescales shorter than the Hβlag. Modeling the lags requires additional reprocessing constrained at a radius consistent with the BLR size scale inferred from contemporaneous Hβ-lag measurements. When we divide the campaign light curves, the UVOIR lags show substantial variations, with longer lags measured when obscuration from an ionized outflow is greatest. We suggest that, when the obscurer is strongest, reprocessing by the BLR elongates the lags most significantly. As the wind weakens, the lags are dominated by shorter accretion disk lags.more » « less
-
Abstract We fit the UV/optical lightcurves of the Seyfert 1 galaxy Mrk 817 to produce maps of the accretion disk temperature fluctuationsδTresolved in time and radius. TheδTmaps are dominated by coherent radial structures that move slowly (v≪c) inward and outward, which conflicts with the idea that disk variability is driven only by reverberation. Instead, these slow-moving temperature fluctuations are likely due to variability intrinsic to the disk. We test how modifying the input lightcurves by smoothing and subtracting them changes the resultingδTmaps and find that most of the temperature fluctuations exist over relatively long timescales (hundreds of days). We show how detrending active galactic nucleus (AGN) lightcurves can be used to separate the flux variations driven by the slow-moving temperature fluctuations from those driven by reverberation. We also simulate contamination of the continuum emission from the disk by continuum emission from the broad-line region (BLR), which is expected to have spectral features localized in wavelength, such as the Balmer break contaminating theUband. We find that a disk with a smooth temperature profile cannot produce a signal localized in wavelength and that any BLR contamination should appear as residuals in our model lightcurves. Given the observed residuals, we estimate that only ∼20% of the variable flux in theUandulightcurves can be due to BLR contamination. Finally, we discus how these maps not only describe the data but can make predictions about other aspects of AGN variability.more » « less
An official website of the United States government
